题目内容
已知点P在抛物线y2=4x上,则点P到直线l1:4x-3y+6=0的距离和到直线l2:x=-1的距离之和的最小值为( )
分析:x=-1是抛物线y2=4x的准线,则P到x=-1的距离等于PF,抛物线y2=4x的焦点F(1,0)过P作4x-3y+6=0垂线,和抛物线的交点就是P,所以点P到直线l1:4x-3y+6=0的距离和到直线l2:x=-1的距离之和的最小值就是F(1,0)到直线4x-3y+6=0距离.
解答:解:x=-1是抛物线y2=4x的准线,则P到x=-1的距离等于PF,
抛物线y2=4x的焦点F(1,0)
过P作4x-3y+6=0垂线,和抛物线的交点就是P,
所以点P到直线l1:4x-3y+6=0的距离和到直线l2:x=-1的距离之和的最小值
就是F(1,0)到直线4x-3y+6=0距离,
所以最小值=
=2.
故选C.
抛物线y2=4x的焦点F(1,0)
过P作4x-3y+6=0垂线,和抛物线的交点就是P,
所以点P到直线l1:4x-3y+6=0的距离和到直线l2:x=-1的距离之和的最小值
就是F(1,0)到直线4x-3y+6=0距离,
所以最小值=
| |4-0+6| | ||
|
故选C.
点评:本题考查点到直线的距离公式的求法,是基础题.解题时要认真审题,注意抛物线的性质的灵活运用.
练习册系列答案
相关题目
A、(
| ||
B、(
| ||
| C、(1,2) | ||
| D、(1,-2) |