题目内容
等差数列{an}满足:a1+a3+…+a11=126,且a1-a12=-33.
(1)求数列{an}的通项公式;
(2)数列{bn}满足:bn=
,n∈N*,求数列{bn}的前100项和.
(1)求数列{an}的通项公式;
(2)数列{bn}满足:bn=
| 3 |
| anan+1 |
(1)a1+a3+…+a11=a1+a11+a3+a9+a5+a7=6a6=126,则a6=21,
a1-a12=-11d=-33,则d=3,
则a1=a6-5d=21-15=6
则an=a1+(n-1)d=6+3(n-1)=3n+3,
(2)设数列{bn}的前100项和S100,
由(1)可得,an=3n+3,则an+1=3n+6,
bn=
=
=
(
-
)
则S100=b1+b2+b3+b4+…+b100=
[(
-
)+…+(
-
)+(
-
)]=
.
a1-a12=-11d=-33,则d=3,
则a1=a6-5d=21-15=6
则an=a1+(n-1)d=6+3(n-1)=3n+3,
(2)设数列{bn}的前100项和S100,
由(1)可得,an=3n+3,则an+1=3n+6,
bn=
| 3 |
| (3n+3)(3n+6) |
| 1 |
| 3 |
| 1 |
| n(n+1) |
| 1 |
| 3 |
| 1 |
| n+1 |
| 1 |
| n+2 |
则S100=b1+b2+b3+b4+…+b100=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 100 |
| 1 |
| 101 |
| 1 |
| 101 |
| 1 |
| 102 |
| 25 |
| 153 |
练习册系列答案
相关题目