题目内容
正项数列{an}中,前n项和为Sn,且a1=2,且an=2
+2(n≥2).
(1)求数列{an}的通项公式;
(2)设bn=
,Tn=b1+b2+…+bn,证明
≤Tn<7.
| 2Sn-1 |
(1)求数列{an}的通项公式;
(2)设bn=
| an+8 |
| 2n+1 |
| 5 |
| 2 |
(1)由an=2
+2(n≥2),得Sn-Sn-1=2
+2(n≥2),
∴Sn=Sn-1+2
+2=(
+
)2,
∴
=
+
,
∴{
}是首项为
公差为
的等差数列,∴
=
n,∴Sn=2n2,
∴an=2
+2=4n-2(n≥2),对n=1也成立,
∴an=4n-2;
(2)证明:bn=
,
Tn=
+
+
+…+
,
Tn=
+
+
+…+
+
,
两式相减,得
Tn=
+
+
+…+
-
=
-
,
所以T n=7-
,
∵n∈N•∴
>0∴Tn<7,
下面证明Tn≥
,
∵Tn+1-Tn=
-
=
>0,∴Tn+1>Tn,∴{Tn}单调递增,
∴Tn≥T1=
,
∴
≤Tn<7
| 2Sn-1 |
| 2Sn-1 |
∴Sn=Sn-1+2
| 2 |
| Sn-1 |
| Sn-1 |
| 2 |
∴
| Sn |
| Sn-1 |
| 2 |
∴{
| Sn |
| 2 |
| 2 |
| Sn |
| 2 |
∴an=2
| 4(n-1)2 |
∴an=4n-2;
(2)证明:bn=
| 2n+3 |
| 2n |
Tn=
| 5 |
| 21 |
| 7 |
| 22 |
| 9 |
| 23 |
| 2n+3 |
| 2n |
| 1 |
| 2 |
| 5 |
| 22 |
| 7 |
| 23 |
| 9 |
| 24 |
| 2n+1 |
| 2n |
| 2n+3 |
| 2n+1 |
两式相减,得
| 1 |
| 2 |
| 5 |
| 2 |
| 2 |
| 22 |
| 2 |
| 23 |
| 2 |
| 2n |
| 2 |
| 2n+1 |
| 7 |
| 2 |
| 2n+7 |
| 2n+1 |
所以T n=7-
| 2n+7 |
| 2n |
∵n∈N•∴
| 2n+7 |
| 2n |
下面证明Tn≥
| 5 |
| 2 |
∵Tn+1-Tn=
| 2n+7 |
| 2n |
| 2n+9 |
| 2n+1 |
| 2n+5 |
| 2n+1 |
∴Tn≥T1=
| 5 |
| 2 |
∴
| 5 |
| 2 |
练习册系列答案
相关题目