题目内容
先后抛掷两枚均匀的骰子(骰子是一种正方体的玩具,在正方体各面上分别有点数1,2,3,4,5,6),骰子落地后朝上的点数分别为x,y,则的概率为( )
A. B. C. D.
(本小题满分12分)已知.
(Ⅰ)求的最小正周期;
(Ⅱ)求的单调增区间;
(Ⅲ)若[,]时,求的值域.
给出一个程序框图,则输出的值是( )
A.39 B.41 C.43 D.45
从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有( )
A.70种 B.112种 C.140种 D.168种
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与p,且乙投球2次均未命中的概率为.
(Ⅰ)求乙投球的命中率p;
(Ⅰ)求甲投球2次,至少命中1次的概率.
函数有极值的充要条件是 .
如图,为直角三角形,,以AB为直径的圆交AC与点E,点D是BC边的中点,连接OD交圆于点M,求证:
(1)O、B、D、E四点共圆;
(2).
用反证法证明命题“若a+b+c≥0,abc≤0,则a、b、c三个实数中最多有一个小于零”的反设内容为( )
A.a、b、c三个实数中最多有一个不大于零
B.a、b、c三个实数中最多有两个小于零
C.a、b、c三个实数中至少有两个小于零
D.a、b、c三个实数中至少有一个不大于零
(本题满分12分)已知锐角中内角、、的对边分别为、、,,且.
(Ⅰ)求角的值;
(Ⅱ)设函数,图象上相邻两最高点间的距离为,求的取值范围.