题目内容

如图,在四棱锥O﹣ABCD中,AD∥BC,AB=AD=2BC,OB=OD,M是OD的中点.求证:
(Ⅰ)直线MC∥平面OAB;
(Ⅱ)直线BD⊥直线OA.
证明:(1)设N是OA的中点,连接MN,NB,
因为M是OD的中点,
所以MN∥AD,且2MN=AD,
又AD∥BC,AD=2BC,
所以MNBC是平行四边形,
所以MC∥NB,
又MC 不在平面OAB上,
NB平面OAB,
所以直线MC∥平面OAB;
(2)设H是BD的中点,连接AH,
因为AB=AD,所以AH⊥BD,
又因为OB=OD,所以OH⊥BD
所以BD⊥面OAH
所以BD⊥OA.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网