题目内容
某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级籽棉2吨、二级籽棉1吨;生产乙种棉纱1吨需耗一级籽棉1吨,二级籽棉2吨.每1吨甲种棉纱的利润为900元,每1吨乙种棉纱的利润为600元.工厂在生产这两种棉纱的计划中,要求消耗一级籽棉不超过250吨,二级籽棉不超过300吨.问甲、乙两种棉纱应各生产多少吨,能使利润总额最大?并求出利润总额的最大值.
解:设生产甲、乙两种棉纱分别为x、y吨,利润总额为z, 3x+2y=0
则z=900x+600y………3分![]()
且
………6分
作直线l:900x+600y=0,即3x+2y=0,
把直线l向右上方平移至过直线2x+y=250与
直线x+2y=300的交点位置M(
此时所求利润总额z=900x+600y取最大值130000元……..12分
解析
练习册系列答案
相关题目