题目内容
若直线与曲线只有一个公共点,求实数的取值集合是_______
如图,△OBC的三个顶点坐标分别为(0,0)、(1,0)、(0,2),设P1为线段BC的中点,P2为线段CO的中点,P3为线段OP1的中点,对于每一个正整数n,Pn+3为线段PnPn+1的中点,令Pn的坐标为(xn,yn),an=yn+yn+1+yn+2.
(Ⅰ)求a1,a2,a3及an;
(Ⅱ)证明yn+4=1-,n∈N*,
(Ⅲ)若记bn=y4n+4-y4n,n∈N*,证明{bn}是等比数列.
如图,已知椭圆的离心率是,分别是椭圆的左、右两个顶点,点是椭圆的右焦点。点是轴上位于右侧的一点,且满足。
(1)求椭圆的方程以及点的坐标;
(2)过点作轴的垂线,再作直线与椭圆有且仅有一个公共点,直线交直线于点。求证:以线段为直径的圆恒过定点,并求出定点的坐标。
在△ABC中,角A、B、C的对边分别为a、b、c,.
(1)求cosC; (2)若
已知直线,若,则。
函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,xn,使得,则n的取值范围为( )
A.{3,4} B.{2,3,4}
C.{3,4,5} D.{2,3}
学校科技小组在计算机上模拟航天器变轨返回试验. 设计方案如图:航天器运行(按顺时针方向)的轨迹方程为,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以轴为对称轴、 为顶点的抛物线的实线部分,降落点为. 观测点同时跟踪航天器.
(1)求航天器变轨后的运行轨迹所在的曲线方程;
(2)试问:当航天器在轴上方时,观测点测得离航天器的距离分别为多少时,应向航天器发出变轨指令?
直线与双曲线的渐近线交于两点,设为双曲线上的任意一点,若
(,为坐标原点),则下列不等式恒成立的是 ( )
(A) (B) (C) (D)
P是以F1,F2为焦点的椭圆上的任意一点,若∠PF1F2=α,∠PF2F1=β,且cosα=,sin(α+β)=,则此椭圆的离心率为 .