题目内容
12.(Ⅰ)求证:平面ABCD⊥平面ADE;
(Ⅱ)若三棱锥A-BDE的体积为$\frac{\sqrt{3}}{3}$,求AE长.
分析 (Ⅰ)推导出AE⊥CD,AD⊥CD,从而CD⊥平面ADE,由此能证明平面ABCD⊥平面ADE.
(Ⅱ)推导出BA⊥平面ADE,AE⊥DE,由此利用VB-ADE=VA-BDE,能求出AE的长.
解答 证明:(Ⅰ)∵AE⊥平面CDE,CD?平面CDE,
∴AE⊥CD,![]()
∵AD⊥CD,∴CD⊥平面ADE,
又CD?面ABCD,∴平面ABCD⊥平面ADE.
解:(Ⅱ)∵平面ABCD⊥平面ADE,且BA⊥DA,
∴BA⊥平面ADE,
∵AE⊥平面CDE,∴AE⊥DE,
设AE=x,DA=2,得DE=$\sqrt{4-{x}^{2}}$,
∴VB-ADE=$\frac{1}{3}×\frac{1}{2}x\sqrt{4-{x}^{2}}$×2=$\frac{1}{3}x\sqrt{4-{x}^{2}}$,
∵VB-ADE=VA-BDE=$\frac{\sqrt{3}}{3}$,∴$x\sqrt{4-{x}^{2}}$=$\sqrt{3}$,
解得x=1或x=$\sqrt{3}$.
∴AE=1或AE=$\sqrt{3}$.
点评 本题考查面面垂直的证明,考查线段长的求法,考查推理论证能力、运算求解能力、空间思维能力,考查函数与方程思想、化归转化思想、数形结合思想,是中档题.
练习册系列答案
相关题目
20.已知长方体ABCD-A1B1C1D1中,$A{A_1}=AB=\sqrt{3}$,AD=1,则异面直线B1C和C1D所成角的余弦值为( )
| A. | $\frac{{\sqrt{6}}}{4}$ | B. | $\frac{{\sqrt{6}}}{3}$ | C. | $\frac{{\sqrt{2}}}{6}$ | D. | $\frac{{\sqrt{3}}}{6}$ |
17.将直角三角形ABC沿斜边上的高AD折成120°的二面角,已知直角边AB=4$\sqrt{3}$,AC=4$\sqrt{6}$,那么下面说法正确的是( )
| A. | 平面ABC⊥平面ACD | |
| B. | 四面体D-ABC的体积是$\frac{16}{3}\sqrt{6}$ | |
| C. | 二面角A-BC-D的正切值是$\frac{{\sqrt{42}}}{5}$ | |
| D. | BC与平面ACD所成角的正弦值是$\frac{{\sqrt{21}}}{14}$ |
2.已知l、m是两直线,α是平面,l∥α,m⊥α,则直线l、m的关系是( )
| A. | l∥m | B. | l⊥m | C. | l与m是相交直线 | D. | l与m是异面直线 |