题目内容
已知{an}为等差数列,且a3=-6,a6=0.
(1)求{an}的通项公式;
(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求{bn}的前n项和公式.
解 (1)设等差数列{an}的公差为d.
因为a3=-6,a6=0,
所以![]()
解得a1=-10,d=2.
所以an=-10+(n-1)×2=2n-12.
(2)设等比数列{bn}的公比为q.
因为b2=a1+a2+a3=-24,b1=-8,
所以-8q=-24,q=3.
所以数列{bn}的前n项和公式为
Sn=
=4(1-3n).
练习册系列答案
相关题目