题目内容

14.已知函数$f(x)=A{cos^2}(ωx+φ)+1({A>0,ω>0,0<φ<\frac{π}{2}})$的最大值为3,f(x)的图象与y轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f(1)+f(2)+f(3)+…+f(2017)的值为(  )
A.4030B.4032C.4033D.4035

分析 将函数f(x)化简,根据最大值为3,f(x)的图象与y轴的交点坐标为(0,2),相邻两条对称轴间的距离为2,求解出解析式,根据周期,即可计算f(1)+f(2)+f(3)+…+f(2017)的值.

解答 解:函数$f(x)=A{cos^2}(ωx+φ)+1({A>0,ω>0,0<φ<\frac{π}{2}})$,
化简可得:f(x)=A($\frac{1}{2}$$+\frac{1}{2}$cos(2ωx+2φ)+1=$\frac{A}{2}$cos(2ωx+2φ)+$\frac{A+2}{2}$,
∵F(x)的最大值为3,即$\frac{A}{2}$+$\frac{A+2}{2}$=3,
∴A=2.
可得:f(x)=cos(2ωx+2φ)+2,
f(x)的图象与y轴的交点坐标为(0,2),
∴2=cos(2φ)+2.
∵0<φ$<\frac{π}{2}$,
∴φ=$\frac{π}{4}$.
相邻两条对称轴间的距离为2,
∴周期T=4,即$\frac{2π}{2ω}=4$,
ω=$\frac{π}{4}$.
∴f(x)=cos($\frac{π}{2}$x+$\frac{π}{2}$)+2,
∴f(1)=cos($\frac{π}{2}$+$\frac{π}{2}$)+2=1,
f(2)=cos(π+$\frac{π}{2}$)+2=2,
f(3)=cos($\frac{3π}{2}$π+$\frac{π}{2}$)+2=3,
f(4)=cos(2π+$\frac{π}{2}$)+2=2,
∴f(1)+f(2)+f(3)+f(4)=8,
∵周期T=4,
f(1)+f(2)+f(3)+…+f(2017)=504[f(1)+f(2)+f(3)+f(4)]+f(1)=504×8+1=4033.
故选C

点评 本题考查了三角函数的化简能力和解析式的求法,周期的计算和运用.属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网