题目内容
9.如图,已知正三棱锥V-ABC,底面积为16$\sqrt{3}$,一条侧棱长为2$\sqrt{6}$,计算它的高和斜高.分析 取AB中点D,连结CD,作VO⊥底面ABC,垂足为O,由已知求出AB=8,OC=$\frac{8\sqrt{3}}{3}$,DO=$\frac{4\sqrt{3}}{3}$,由此利用勾股定理能求出它的高和斜高.
解答
解:取AB中点D,连结CD,作VO⊥底面ABC,垂足为O,
∵正三棱锥V-ABC,底面积为16$\sqrt{3}$,一条侧棱长为2$\sqrt{6}$,
∴O∈CD,$\frac{1}{2}×AB×AB×sin60°$=$16\sqrt{3}$,解得AB=8,
∴OC=$\frac{2}{3}CD=\frac{2}{3}\sqrt{64-16}$=$\frac{2}{3}×4\sqrt{3}$=$\frac{8\sqrt{3}}{3}$,
∵侧棱长VO=2$\sqrt{6}$,∴高VO=$\sqrt{(2\sqrt{6})^{2}-(\frac{8\sqrt{3}}{3})^{2}}$=$\frac{2\sqrt{6}}{3}$.
∵DO=$\frac{1}{3}CD$=$\frac{1}{3}\sqrt{64-16}$=$\frac{4\sqrt{3}}{3}$,
∴斜率VD=$\sqrt{V{O}^{2}+D{O}^{2}}$=$\sqrt{(2\sqrt{6})^{2}+(\frac{4\sqrt{3}}{3})^{2}}$=$\frac{2\sqrt{66}}{3}$.
点评 本题考查正三棱锥的高和斜高的求法,是中档题,解题时要认真审题,注意勾股定理的合理运用.
练习册系列答案
相关题目
20.设函数f(n)=k(k∈N+),k是π的小数点后的第n位数字,π=3.1415926535…,则$\underset{\underbrace{f(f…f(f(10)))}}{n个f}$(n≥6)等于( )
| A. | 1 | B. | 0 | C. | -1 | D. | 2 |
4.将函数$y=\sqrt{3}cosx+sinx,(x∈R)$的图象向右平移θ(θ>0)个单位长度后,所得到的图象关于y轴对称,则θ的最小值是( )
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
14.已知三棱锥的底面是边长为a的正三角形,则过各侧棱中点的截面的面积为( )
| A. | $\frac{\sqrt{3}}{4}{a}^{2}$ | B. | $\frac{\sqrt{4}}{8}{a}^{2}$ | C. | $\frac{\sqrt{3}}{16}{a}^{2}$ | D. | $\frac{\sqrt{13}}{32}{a}^{2}$ |