题目内容
个男生,个女生排成一排,若女生不能排在两端,但又必须相邻,则不同的排法种数为
A. B. C. D.
已知为两条不同的直线,为两个不同的平面,且,给出下列结论:①若∥,则∥ ;②若∥,则∥;③若⊥,则⊥; ④若⊥,则⊥;其中正确结论的个数是( )
A.0 B.1 C.2 D.3
(本小题满分12分)已知,直线,椭圆,分别为椭圆的左、右焦点.
(1)当直线过右焦点时,求直线的方程;
(2)设直线与椭圆交于两点,,的重心分别为.若原点在以线段为直径的圆内,求实数的取值范围.
给出下列结论:
①设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则α⊥β是a⊥b的必要不充分条件.
②在区间[-1,1]上随机取一个数x,则的值介于0到之间的概率为
③从以正方体的顶点连线所成的直线中任取两条,则所取两条直线为异面直线的概率为
④将4个相同的红球和4个相同的篮球排成一排,从左到右每个球依次对应的序号为1,2,3,…,8,若同色球之间不加区分,则4个红球对应的序号之和小于4个蓝球对应的序号之和的排列方法种数为31.
其中正确结论的序号为 .
设,则的大小关系是 ( )
设椭圆的左、右焦点分别为,是上的点,,,则的离心率为( )
命题的否命题为
A.
B.
C.
D.
(本题满分12分)一个盒子里装有三张卡片,分别标记有数字,,,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为,,.
(Ⅰ)求“抽取的卡片上的数字满足”的概率;
(Ⅱ)求“抽取的卡片上的数字,,不完全相同”的概率.
设函数有且仅有两个极值点,则实数的求值范围是 .