题目内容
如图,
是圆
的直径,点
在圆
上,
,
交
于点
,
平面
,
,
.
(1)证明:
;
(2)求平面
与平面
所成的锐二面角的余弦值.
解:(1)
平面![]()
平面
,
.……………1分
又![]()
,
平面![]()
而
平面![]()
. ………………………………………3分
是圆
的直径,
.
又![]()
,
![]()
.
平面![]()
,
,
平面
.
![]()
与
都是等腰直角三角形.
.
,即
(也可由勾股定理证得).………………………………5分
,
平面
.
而
平面
,
![]()
. ………………………………………………………………………………6分
(2)延长
交
于
,连
,过
作
,连结
.
由(1)知
平面
,
平面
,
.
而
,
平面
.
平面
,
,
为平面
与平面
所成的
二面角的平面角. ……………………8分
在
中,![]()
,
,
.
由
,得
.
.
又
,
,则
. ………………………………11分
是等腰直角三角形,
.
平面
与平面
所成的锐二面角的余弦值为
. …12分
练习册系列答案
相关题目