ÌâÄ¿ÄÚÈÝ
11£®£¨1£©»¯¼òÏÂʽ£º$\frac{\sqrt{{a}^{3}{b}^{2}•\root{3}{a{b}^{2}}}}{£¨{a}^{\frac{1}{4}}{b}^{\frac{1}{2}}£©^{4}•\root{3}{\frac{b}{a}}}$£¨a£¾0£¬b£¾0£©£»£¨2£©ÒÑÖªx${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=$\sqrt{5}$£¬ÇóÏÂÁи÷ʽµÄÖµ£º
¢Ù$\frac{{x}^{\frac{3}{2}}+{x}^{-\frac{3}{2}}+2}{{x}^{2}+{x}^{-2}}$+3£»
¢Úx2-x-2£®
·ÖÎö £¨1£©ÀûÓÃÖ¸ÊýÃݵÄÔËËãÐÔÖʼ´¿ÉµÃ³ö£®
£¨2£©x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=$\sqrt{5}$£¬¿ÉµÃx+x-1=$£¨{x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}£©^{2}$-2£¬x2+x-2=£¨x+x-1£©2-2£¬$x-{x}^{-1}=¡À\sqrt{£¨x-{x}^{-1}£©^{2}}$=$¡À\sqrt{£¨x+{x}^{-1}£©^{2}-4}$£¬´úÈë¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©Ôʽ=$\frac{{a}^{£¨3+\frac{1}{3}£©¡Á\frac{1}{2}}{b}^{£¨2+\frac{2}{3}£©¡Á\frac{1}{2}}}{{a}^{\frac{1}{4}¡Á4-\frac{1}{3}}{b}^{\frac{1}{2}¡Á4+\frac{1}{3}}}$=${a}^{\frac{5}{3}-\frac{2}{3}}$${b}^{\frac{4}{3}-\frac{7}{3}}$=ab-1£®
£¨2£©¡ßx${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=$\sqrt{5}$£¬¡àx+x-1=$£¨{x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}£©^{2}$-2=5-2=3£¬x2+x-2=£¨x+x-1£©2-2=7£¬$x-{x}^{-1}=¡À\sqrt{£¨x-{x}^{-1}£©^{2}}$=$¡À\sqrt{£¨x+{x}^{-1}£©^{2}-4}$=¡À$\sqrt{5}$£®
¡à¢ÙÔʽ=$\frac{£¨{x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}£©£¨x-1+{x}^{-1}£©+2}{{x}^{2}+{x}^{-2}}$+3=$\frac{\sqrt{5}£¨3-1£©+2}{7}$+3=$\frac{23+2\sqrt{5}}{7}$£®
¢ÚÔʽ=£¨x+x-1£©£¨x-x-1£©=$¡À3\sqrt{5}$£®
µãÆÀ ±¾Ì⿼²éÁËÖ¸ÊýÃݵÄÔËËãÐÔÖÊ¡¢³Ë·¨¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | {x|-3¡Üx¡Ü5} | B£® | {x|-3£¼x£¼5} | C£® | {x|x¡Ý5»òx¡Ü-3} | D£® | R |
| A£® | {x|x£¾-2} | B£® | {x|-2£¼x£¼8} | C£® | {x|3£¼x£¼8} | D£® | {x|-2£¼x£¼3] |
| A£® | 1 | B£® | -1 | C£® | 1»ò-1 | D£® | -$\sqrt{5}$ |