题目内容

在数列{an}中,a1=a2=1,an+1+(n-1)an-1=(n+1)an,n=2,3,4,….关于数列{an}给出下列四个结论:
①数列{an+1-nan}是常数列;                   
②对于任意正整数n,有an≤an+1成立;
③数列{an}中的任意连续3项都不会成等比数列;   
n
k=1
ak
ak+2
=
n
n+1

其中全部正确结论的序号是
①②③④
①②③④
分析:①由an+1+(n-1)an-1=(n+1)an,可得(an+1-nan)-[an-(n-1)an-1]=0,从而可知数列{an+1-nan}是常数列;                   
②由①知,an+1-nan=0,从而可得
an+1
an
=n,故对于任意正整数n,有an≤an+1成立;
③由②知,数列{an}中的任意连续3项都不会成等比数列;   
④确定
an
an+2
=
1
n(n+1)
=
1
n
-
1
n+1
,利用裂项法,可求和.
解答:解:①∵an+1+(n-1)an-1=(n+1)an
∴(an+1-nan)-[an-(n-1)an-1]=0
∵a1=a2=1,∴a2-a1=0,
∴数列{an+1-nan}是常数列;                   
②由①知,an+1-nan=0,∴
an+1
an
=n,∴对于任意正整数n,有an≤an+1成立;
③由②知,数列{an}中的任意连续3项都不会成等比数列;   
④∵
an+1
an
=n,
an+2
an+1
=n+1
,∴
an
an+2
=
1
n(n+1)
=
1
n
-
1
n+1

n
k=1
ak
ak+2
=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=
n
n+1

综上,正确结论的序号是①②③④
故答案为①②③④
点评:本题考查数列递推式,考查裂项法求数列的和,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网