ÌâÄ¿ÄÚÈÝ
12£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£®ÇÒS1=2£¬Sn+1=2Sn+2£¨n¡ÊN*£©£¬bn=Sn+2£®£¨1£©ÇóÖ¤£ºÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÈôÊýÁÐ{cn}Âú×ãcn=$\frac{{a}_{1}-1}{2}$+$\frac{{a}_{2}-1}{{2}^{2}}$+¡+$\frac{{a}_{n}-1}{{2}^{n}}$£¨n¡ÊN*£©£¬Çó{cn}µÄǰnÏîºÍTn£®
·ÖÎö £¨1£©Ò×Öªb1=S1+2=4£¬ÓÉSn+1=2Sn+2¿ÉµÃbn+1=2bn£¬´Ó¶øÖ¤Ã÷£»
£¨2£©ÓÉ£¨1£©ÖªSn=2n+1-2£¬´Ó¶øÌÖÂÛÇóÊýÁеÄͨÏʽ£»
£¨3£©»¯¼òcn=n-£¨$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+¡+$\frac{1}{{2}^{n}}$£©=n-1+$\frac{1}{{2}^{n}}$£¬´Ó¶ø²ðÏîÇóÆäºÍ£®
½â´ð ½â£º£¨1£©Ö¤Ã÷£ºb1=S1+2=4£¬
¡ßSn+1=2Sn+2£¬¡àSn+1+2=2Sn+4=2£¨Sn+2£©£¬
¡àbn+1=2bn£¬
¹ÊÊýÁÐ{bn}ÊÇÒÔ4ΪÊ×Ï2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ»
£¨2£©ÓÉ£¨1£©Öª£¬bn=Sn+2=4•2n-1=2n+1£¬
¹ÊSn=2n+1-2£¬
µ±n=1ʱ£¬a1=S1=2£¬
µ±n¡Ý2ʱ£¬an=Sn-Sn-1=£¨2n+1-2£©-£¨2n-2£©=2n£¬
µ±n=1ʱÉÏʽҲ³ÉÁ¢£¬
¹Êan=2n£»
£¨3£©cn=$\frac{{a}_{1}-1}{2}$+$\frac{{a}_{2}-1}{{2}^{2}}$+¡+$\frac{{a}_{n}-1}{{2}^{n}}$=$\frac{2-1}{2}$+$\frac{{2}^{2}-1}{{2}^{2}}$+¡+$\frac{{2}^{n}-1}{{2}^{n}}$
=n-£¨$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+¡+$\frac{1}{{2}^{n}}$£©=n-1+$\frac{1}{{2}^{n}}$£¬
¹ÊTn=0+$\frac{1}{2}$+£¨1+$\frac{1}{{2}^{2}}$£©+¡+£¨n-1+$\frac{1}{{2}^{n}}$£©
=$\frac{0+n-1}{2}$•n+1-$\frac{1}{{2}^{n}}$
=$\frac{1}{2}$n£¨n-1£©+1-$\frac{1}{{2}^{n}}$£®
µãÆÀ ±¾Ì⿼²éÁËÊýÁеÄÐÔÖʵÄÅжÏÓëÓ¦Óã¬Í¬Ê±¿¼²éÁË·ÖÀàÌÖÂÛµÄ˼ÏëÓ¦Óü°²ðÏî·¨µÄÓ¦Óã®
| A£® | $\frac{5}{2}$ | B£® | $\frac{15}{2}$ | C£® | $\frac{15}{7}$ | D£® | 5 |
| A£® | $\frac{56}{65}$ | B£® | $\frac{33}{65}$ | C£® | $\frac{5}{6}$ | D£® | $\frac{16}{65}$ |
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ²»³ä·Ö²»±ØÒªÌõ¼þ |