ÌâÄ¿ÄÚÈÝ
Ò»¸öºÐ×Ó×°ÓÐ6ÕÅ¿¨Æ¬£¬ÉÏÃæ·Ö±ðд×ÅÈçÏÂ6¸ö¶¨ÒåÓòΪRµÄº¯Êý£ºf1(x)=log2(x+
)£¬f2(x)=x2£¬f3(x)=
-
£¬f4£¨x£©=sinx£¬f5£¨x£©=cosx£¬f6£¨x£©=2£®
£¨¢ñ£©ÏÖ´ÓºÐ×ÓÖÐÈÎÈ¡Á½ÕÅ¿¨Æ¬£¬½«¿¨Æ¬Éϵĺ¯ÊýÏà¼ÓµÃµ½Ò»¸öк¯Êý£¬ÇóËùµÃµÄк¯ÊýÊÇÆæº¯ÊýµÄ¸ÅÂÊ£»
£¨¢ò£©ÏÖ´ÓºÐ×ÓÖÐÖðÒ»³éÈ¡¿¨Æ¬£¬ÇÒÿ´ÎÈ¡³öºó¾ù²»·Å»Ø£¬ÈôÈ¡µ½Ò»ÕżÇÓÐżº¯ÊýµÄ¿¨Æ¬ÔòÍ£Ö¹³éÈ¡£¬·ñÔò¼ÌÐø½øÐУ¬Çó³éÈ¡´ÎÊý¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
| x2+1 |
| 1 |
| 2 |
| 1 |
| 2x+1 |
£¨¢ñ£©ÏÖ´ÓºÐ×ÓÖÐÈÎÈ¡Á½ÕÅ¿¨Æ¬£¬½«¿¨Æ¬Éϵĺ¯ÊýÏà¼ÓµÃµ½Ò»¸öк¯Êý£¬ÇóËùµÃµÄк¯ÊýÊÇÆæº¯ÊýµÄ¸ÅÂÊ£»
£¨¢ò£©ÏÖ´ÓºÐ×ÓÖÐÖðÒ»³éÈ¡¿¨Æ¬£¬ÇÒÿ´ÎÈ¡³öºó¾ù²»·Å»Ø£¬ÈôÈ¡µ½Ò»ÕżÇÓÐżº¯ÊýµÄ¿¨Æ¬ÔòÍ£Ö¹³éÈ¡£¬·ñÔò¼ÌÐø½øÐУ¬Çó³éÈ¡´ÎÊý¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
£¨¢ñ£©ÉèA±íʾ¡°´ÓºÐ×ÓÖÐÈÎÈ¡Á½ÕÅ¿¨Æ¬£¬½«¿¨Æ¬Éϵĺ¯ÊýÏà¼Ó£¬ËùµÃµÄк¯ÊýÊÇÆæº¯Êý¡±£¬
¡ßf1(x)=log2(x+
)ÊÇÆæº¯Êý£¬
f2(x)=x2ÊÇżº¯Êý£¬
f3(x)=
-
ÊÇÆæº¯Êý£¬
f4£¨x£©=sinxÊÇÆæº¯Êý£¬
f5£¨x£©=cosxÊÇżº¯Êý£¬
f6£¨x£©=2ÊÇżº¯Êý£®
¡àP£¨A£©=
=
£®
£¨¢ò£©ÓÉÌâÉèÖª¦Î¿ÉÈ¡1£¬2£¬3£¬4£¬
P£¨¦Î=1£©=
=
£¬
P£¨¦Î=2£©=
•
=
£¬
P£¨¦Î=3£©=
•
•
=
£¬
P£¨¦Î=4£©=
•
•
•
=
£¬
¡à¦ÎµÄ·Ö²¼ÁÐÊÇ£º
E¦Î=1¡Á
+2¡Á
+3¡Á
+4¡Á
=
£®
¡ßf1(x)=log2(x+
| x2+1 |
f2(x)=x2ÊÇżº¯Êý£¬
f3(x)=
| 1 |
| 2 |
| 1 |
| 2x+1 |
f4£¨x£©=sinxÊÇÆæº¯Êý£¬
f5£¨x£©=cosxÊÇżº¯Êý£¬
f6£¨x£©=2ÊÇżº¯Êý£®
¡àP£¨A£©=
| ||
|
| 1 |
| 5 |
£¨¢ò£©ÓÉÌâÉèÖª¦Î¿ÉÈ¡1£¬2£¬3£¬4£¬
P£¨¦Î=1£©=
| ||
|
| 1 |
| 2 |
P£¨¦Î=2£©=
| ||
|
| ||
|
| 3 |
| 10 |
P£¨¦Î=3£©=
| ||
|
| ||
|
| ||
|
| 3 |
| 20 |
P£¨¦Î=4£©=
| ||
|
| ||
|
| ||
|
| ||
|
| 1 |
| 20 |
¡à¦ÎµÄ·Ö²¼ÁÐÊÇ£º
| ¦Î | 1 | 2 | 3 | 4 | ||||||||
| P |
|
|
|
|
| 1 |
| 2 |
| 3 |
| 10 |
| 3 |
| 20 |
| 1 |
| 20 |
| 7 |
| 4 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿