题目内容
【题目】某厂拟生产甲、乙两种适销产品,每件销售收入分别为3万元、2万元,甲、乙产品都需要在
两种设备上加工,在每台
上加工1件甲所需工时分别是1
、2
,加工1件乙所需工时分别为2
、1
,
两种设备每月有效使用台时数分别为400
和500
,如何安排生产可使收入最大?
【答案】800万
【解析】试题分析:先设甲、乙两种产品月产量分别为
件,写出约束条件、目标函数,欲求生产收入最大值,即求可行域中的最优解,将目标函数看成是一条直线,分析目标函数
与直线截距的关系,进而求出最优解.
试题解析:
设每月安排生产甲产品
件,乙产品
件,由题意知,
,目标函数
,可行域如图所示:
![]()
,可得
点坐标为
,由目标函数得:
,当直线截距最大时,
最大,所以当直线过
点时,即当
时,
取到最大值为800万
练习册系列答案
相关题目
【题目】某经销商从外地一水殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如下图:
![]()
(1)记事件
为:“从这批小龙虾中任取一只,重量不超过35
的小龙虾”,求
的估计值;
(2)试估计这批小龙虾的平均重量;
(3)为适应市场需求,制定促销策略.该经销商又将这批小龙虾分成三个等级,并制定出销售单价,如下表:
等级 | 一等品 | 二等品 | 三等品 |
重量( |
|
|
|
单价(元/只) | 1.2 | 1.5 | 1.8 |
试估算该经销商以每千克至多花多少元(取整数)收购这批小龙虾,才能获得利润?