题目内容

8.若一个四位数的各位数字相加和为10,则称该数为“完美四位数”,如数字“2017”.试问用数字0,1,2,3,4,5,6,7组成的无重复数字且大于2017的“完美四位数”有(  )个.
A.53B.59C.66D.71

分析 根据题意,分析可得四位数字相加和为10的情况有①0、1、3、6,②0、1、4、5,③0、1、2、7,④0、2、3、5,⑤1、2、3、4;共5种情况,据此分5种情况讨论,依次求出每种情况下大于2017的“完美四位数”的个数,将其相加即可得答案.

解答 解:根据题意,四位数字相加和为10的情况有①0、1、3、6,②0、1、4、5,③0、1、2、7,④0、2、3、5,⑤1、2、3、4;共5种情况,
则分5种情况讨论:
①、四个数字为0、1、3、6时,
千位数字可以为3或6,有2种情况,将其余3个数字全排列,安排在百位、十位、个位,有A33=6种情况,
此时有2×6=12个“完美四位数”,
②、四个数字为0、1、4、5时,
千位数字可以为4或5,有2种情况,将其余3个数字全排列,安排在百位、十位、个位,有A33=6种情况,
此时有2×6=12个“完美四位数”,
③、四个数字为0、1、2、7时,
千位数字为7时,将其余3个数字全排列,安排在百位、十位、个位,有A33=6种情况,
千位数字为2时,有2071、2107、2170、2701、2710,共5种情况,
此时有6+5=11个“完美四位数”,
④、四个数字为0、2、3、5时,
千位数字可以为2或3或5,有3种情况,将其余3个数字全排列,安排在百位、十位、个位,有A33=6种情况,
此时有3×6=18个“完美四位数”,
⑤、四个数字为1、2、3、4时,
千位数字可以为3或4或2,有3种情况,将其余3个数字全排列,安排在百位、十位、个位,有A33=6种情况,
此时有3×6=18个“完美四位数”,
则一共有12+12+11+18+18=71个“完美四位数”,
故选:D.

点评 本题考查排列、组合的应用,涉及分类计数原理的运用,分类讨论注意做到不重不漏.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网