题目内容
13.| A. | 3 | B. | 2 | C. | -1 | D. | -2 |
分析 由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.
解答 解:由题意,模拟执行程序,可得
n=1,S=1,
满足条件n≤5,S=0,n=2
满足条件n≤5,S=2,n=3
满足条件n≤5,S=-1,n=4
满足条件n≤5,S=3,n=5
满足条件n≤5,S=-2,n=6
不满足条件n≤5,退出循环,输出S的值为-2.
故选:B.
点评 本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.
练习册系列答案
相关题目
3.已知tanαcosα>0且cotαsinα<0,则α是( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
4.设向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$$+\overrightarrow{b}$$+\overrightarrow{c}$=$\overrightarrow{0}$,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,|$\overrightarrow{c}$|=4,则$\overrightarrow{a}$$•\overrightarrow{b}$=( )
| A. | 4 | B. | 2$\sqrt{2}$ | C. | 2 | D. | $\sqrt{2}$ |
2.函数f(x)=sin2x+2$\sqrt{3}$cos2x-$\sqrt{3}$,g(x)=mcos(2x-$\frac{π}{6}$)-2m+3(m>0),若对任意x1∈[0,$\frac{π}{4}$],存在x2∈[0,$\frac{π}{4}$],使得g(x1)=f(x2)成立,则实数m的取值范围是( )
| A. | (1,$\frac{4}{3}$) | B. | ($\frac{2}{3}$,1] | C. | [$\frac{2}{3}$,1] | D. | [1,$\frac{4}{3}$] |
3.函数f(x)=2cos(2x+θ)sinθ-sin2(x+θ)(θ为常数,且θ≠$\frac{kπ}{2}$,k∈Z)图象的一个对称中心的坐标为( )
| A. | (-$\frac{π}{4}$,0) | B. | (0,0) | C. | ($\frac{θ}{2}$,0) | D. | (θ,0) |