题目内容

1.(1)若$\frac{2+ai}{1+\sqrt{2}i}$=-$\sqrt{2}$i,求实数a的值.
(2)若复数z=$\frac{2i}{1-i}$,求$\overline{z}$+3i.

分析 (1)把已知等式变形展开,由复数相等的条件求得a值;
(2)利用复数代数形式的乘除运算化简求得z,得到$\overline{z}$,再由复数的加法运算得答案.

解答 解:(1)依题意,得2+ai=-$\sqrt{2}$i(1+$\sqrt{2}$i)=2-$\sqrt{2}$i,
∴a=-$\sqrt{2}$;
(2)∵z=$\frac{2i}{1-i}$=$\frac{2i(1+i)}{(1-i)(1+i)}=i(1+i)=-1+i$,
∴$\overline{z}=-1-i$,则$\overline{z}$+3i=-1+2i.

点评 本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网