题目内容
若数列{an}的项构成的新数列{an+1-Kan}是公比为l的等比数列,则相应的数列{an+1-1an}是公比为k的等比数列,运用此性质,可以较为简洁的求出一类递推数列的通项公式,并简称此法为双等比数列法.已知数列{an}中,a1=
,a2=
,且an+1=
an+
.
(1)试利用双等比数列法求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn.
| 3 |
| 5 |
| 31 |
| 100 |
| 1 |
| 10 |
| 1 |
| 2n+1 |
(1)试利用双等比数列法求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn.
(1)有条件知:an+1-
an=
,①
所以{an+1-
an}是公比为
的等比数列,
故{an+1-
an}是以首项为a2-
a1=
,公比为
的等比数列,
所以:an+1-
an=(
)n+1,②
由①、②得an=
(
-
).
(2)Sn=a1+a2+…+an
═
(
)+
(
-
)+…+
(
-
)
=
[(
+
+…+
)-(
+
+…+
)]
=
+
•
-
•
.
| 1 |
| 10 |
| 1 |
| 2n+1 |
所以{an+1-
| 1 |
| 10 |
| 1 |
| 2 |
故{an+1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 100 |
| 1 |
| 10 |
所以:an+1-
| 1 |
| 2 |
| 1 |
| 10 |
由①、②得an=
| 5 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 10n+1 |
(2)Sn=a1+a2+…+an
═
| 5 |
| 2 |
| 1 |
| 4 |
| 1 |
| 102 |
| 5 |
| 2 |
| 1 |
| 23 |
| 1 |
| 103 |
| 5 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 10n+1 |
=
| 5 |
| 2 |
| 1 |
| 4 |
| 1 |
| 23 |
| 1 |
| 2n+1 |
| 1 |
| 102 |
| 1 |
| 103 |
| 1 |
| 10n+1 |
=
| 11 |
| 9 |
| 1 |
| 36 |
| 1 |
| 10n |
| 5 |
| 4 |
| 1 |
| 2n |
练习册系列答案
相关题目