题目内容
2.计算:(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-log327=-$\frac{3}{2}$.分析 根据指数幂和对数的运算性质计算即可.
解答 解:原式=($\frac{3}{2}$)${\;}^{2×\frac{1}{2}}$-log333=$\frac{3}{2}$-3=-$\frac{3}{2}$,
故答案为:$-\frac{3}{2}$
点评 本题考查了指数幂和对数的运算性质,属于基础题.
练习册系列答案
相关题目
3.设$\overrightarrow{a}$,$\overrightarrow{b}$是非零向量,且$\overrightarrow{a}$≠±$\overrightarrow{b}$.则“|$\overrightarrow{a}$|=|$\overrightarrow{b}$|”是“($\overrightarrow{a}+\overrightarrow{b}$)⊥($\overrightarrow{a}-\overrightarrow{b}$)”的( )
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
4.已知数列{an}满足an+1=$\left\{\begin{array}{l}2{a_n}(0≤{a_n}<\frac{1}{2})\\ 2{a_n}-1(\frac{1}{2}≤{a_n}<1)\end{array}\right.$,若a1=$\frac{6}{7}$,则a2017=( )
| A. | $\frac{1}{7}$ | B. | $\frac{3}{7}$ | C. | $\frac{5}{7}$ | D. | $\frac{6}{7}$ |
10.
如图,⊙O与x轴的正半轴交点为A,点B,C在⊙O上,且B($\frac{4}{5}$,-$\frac{3}{5}$),点C在第一象限,∠AOC=α,BC=1,则cos($\frac{5π}{6}$-α)=( )
| A. | -$\frac{4}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
17.在△ABC中,若BC=2,A=60°,则$\overrightarrow{AB}$•$\overrightarrow{CA}$有( )
| A. | 最大值-2 | B. | 最小值-2 | C. | 最大值2$\sqrt{3}$ | D. | 最小值2$\sqrt{3}$ |
11.若点P为椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上的动点,G点满足$\overrightarrow{PG}$=2$\overrightarrow{GO}$(O是坐标原点),则G的轨迹方程为( )
| A. | $\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{27}$=1 | B. | $\frac{4{x}^{2}}{9}$+y2=1 | C. | $\frac{9{x}^{2}}{4}$+3y2=1 | D. | x2+$\frac{4{y}^{2}}{3}$=1 |