题目内容
(2013•浙江模拟)已知函数f(x)=
•
,其中
=(1,sin2x),
=(cos2x,
),在△ABC中,a,b,c分别是角A,B,C的对边,且f(A)=1
(1)求角A;
(2)若a=
,b+c=3,求△ABC的面积.
| m |
| n |
| m |
| n |
| 3 |
(1)求角A;
(2)若a=
| 3 |
分析:(1)利用向量数量积公式,结合辅助角公式化简函数,利用f(A)=1,结合A的范围,可得结论;
(2)先利用余弦定理,结合条件可求bc的值,从而可求△ABC的面积.
(2)先利用余弦定理,结合条件可求bc的值,从而可求△ABC的面积.
解答:解:(1)∵
=(1,sin2x),
=(cos2x,
),f(x)=
•
,
∴f(x)=cos2x+
sin2x=2sin(2x+
)
∵f(A)=1,∴2sin(2A+
)=1,
∵
<2A+
<
,
∴2A+
=
,∴A=
;
(2)由余弦定理知cosA=
=
∵a=
,∴b2+c2-bc=3
∵b+c=3
∴bc=2
∴S△ABC=
bcsinA=
.
| m |
| n |
| 3 |
| m |
| n |
∴f(x)=cos2x+
| 3 |
| π |
| 6 |
∵f(A)=1,∴2sin(2A+
| π |
| 6 |
∵
| π |
| 6 |
| π |
| 6 |
| 13π |
| 6 |
∴2A+
| π |
| 6 |
| 5π |
| 6 |
| π |
| 3 |
(2)由余弦定理知cosA=
| b2+c2-a2 |
| 2bc |
| 1 |
| 2 |
∵a=
| 3 |
∵b+c=3
∴bc=2
∴S△ABC=
| 1 |
| 2 |
| ||
| 2 |
点评:本题考查向量知识的运用,考查三角函数的化简,考查余弦定理的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目