题目内容
在数列{an}中,a1=2,an+1=an+2n+1(n∈N*)
(1)求证:数列{an-2n}为等差数列;
(2)设数列{bn}满足bn=log2(an+1-n),若(1+
)(1+
)(1+
)…(1+
)>k
对一切n∈N*且n≥2恒成立,求实数k的取值范围.
(1)求证:数列{an-2n}为等差数列;
(2)设数列{bn}满足bn=log2(an+1-n),若(1+
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| b4 |
| 1 |
| bn |
| n+1 |
(1)(an+1-2n+1)-(an-2n)=an+1-an-2n=1
故数列{an-2n}为等差数列,且公差d=1.
an-2n=(a1-2)+(n-1)d=n-1,an=2n+n-1;
(2)由(1)可知an=2n+n-1,∴bn=log2(an+1-n)=n
设f(n)=(1+
)(1+
)(1+
)…(1+
)×
,(n≥2)
则f(n+1)=(1+
)(1+
)(1+
)…(1+
)×(1+
)×
,
两式相除可得
=(1+
)×
=
>1,
则有f(n)>f(n-1)>f(n-2)>…>f(2)=
,
要使(1+
)(1+
)(1+
)…(1+
)>k
对一切n∈N*且n≥2恒成立,
必有k<
;
故k的取值范围是k<
.
故数列{an-2n}为等差数列,且公差d=1.
an-2n=(a1-2)+(n-1)d=n-1,an=2n+n-1;
(2)由(1)可知an=2n+n-1,∴bn=log2(an+1-n)=n
设f(n)=(1+
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| b4 |
| 1 |
| bn |
| 1 | ||
|
则f(n+1)=(1+
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| b4 |
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 | ||
|
两式相除可得
| f(n+1) |
| f(n) |
| 1 |
| bn+1 |
| ||
|
| ||
|
则有f(n)>f(n-1)>f(n-2)>…>f(2)=
| ||
| 2 |
要使(1+
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| b4 |
| 1 |
| bn |
| n+1 |
必有k<
| ||
| 2 |
故k的取值范围是k<
| ||
| 2 |
练习册系列答案
相关题目