题目内容
18.已知无穷等比数列{an}各项和是$\frac{9}{4}$,且数列{an}各项平方和为$\frac{81}{8}$,则数列{an}的公比为$-\frac{1}{3}$.分析 利用无穷等比数列{an}各项和公式等于$\frac{9}{4}$,无穷等比数列各项平方,其依然是无穷等比数列,其首项变为${{a}_{1}}^{2}$,公比为q2,利用无穷等比数列{an}各项和公式和等于$\frac{81}{8}$,求解公比q的值即可.
解答 解:由题意,无穷等比数列{an}各项和公式,可得$\frac{{a}_{1}}{1-q}=\frac{9}{4}$(q≠1),…①
$\frac{{{a}_{1}}^{2}}{1-{q}^{2}}=\frac{81}{8}$…②,
由①②解得:q=$-\frac{1}{3}$.
故答案为:$-\frac{1}{3}$.
点评 本题主要考查无穷等比数列{an}各项和公式的运用,属于基础题.
练习册系列答案
相关题目
9.
某市为了节约生活用水,计划在本市试行居民生活用水定额管理.为了较合理地确定居民日常用水量的标准,有关部门抽样调查了100位居民.表是这100位居民月均用水量(单位:吨)的频率分布表,根据表解答下列问题:
(1)求表中a和b的值;
(2)请将下面的频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.
(1)求表中a和b的值;
(2)请将下面的频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.
| 分组 | 频数 | 频率 |
| [0,1) | 10 | 0.1 |
| [1,2) | a | 0.2 |
| [2,3) | 30 | 0.3 |
| [3,4) | 20 | b |
| [4,5) | 10 | 0.1 |
| [5,6) | 10 | 0.1 |
| 合计 | 100 | 1 |
6.若$sinα=\frac{3}{5}(0<α<\frac{π}{2})$,则$sin(α+\frac{π}{6})$=( )
| A. | $\frac{{3\sqrt{3}-4}}{10}$ | B. | $\frac{{3\sqrt{3}+4}}{10}$ | C. | $\frac{{3-4\sqrt{3}}}{10}$ | D. | $\frac{{3+4\sqrt{3}}}{10}$ |
10.已知点O为△ABC所在平面内一点,${\overrightarrow{OA}^2}={\overrightarrow{OB}^2}={\overrightarrow{OC}^2}$,若$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AO}$,且$|{\overrightarrow{AC}}|=|{\overrightarrow{AO}}|$,则$\overrightarrow{AB}$与$\overrightarrow{BC}$的夹角为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
7.
如图,点P、Q分别是正方体ABCD-A1B1C1D1的面对角线AD1、BD的中点,则异面直线PQ和BC1所成的角为( )
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |