题目内容

设f(x)=x2+ax+b,求证:||f(1)|,|f(2)||f(3)|中至少有一个不小于
1
2
证明:∵f(x)=x2+px+q
∴f(1)=1+p+qf(2)=4+2p+qf(3)=9+3p+q
所以f(1)+f(3)-2f(2)=(1+p+q)+(9+3p+q)-2(4+2p+q)=2.
假设|f(1)|,|f(2)|,|f(3)|都小于
1
2

|f(1)|<
1
2
,|f(2)|<
1
2
,|f(3)|<
1
2

即有 -
1
2
<f(1)<
1
2
-
1
2
<f(2)<
1
2
-
1
2
<f(3)<
1
2

∴-2<f(1)+f(3)-2f(2)<2
由贞面可知f(1)+f(3)-2f(2)=2,
与-2<f(1)+f(3)-2f(2)<2矛盾,
∴假设不成立,即原命题成立.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网