题目内容
已知数列{an},Sn是其前n项的和,且an=7Sn-1-1(n≥2),a1=2.(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| 1 |
| log2an |
| k |
| 12 |
分析:(I)由题设条件知an+1-an=7(Sn-Sn-1)=7an(n≥2),所以an=2•8n-1=23n-2;(4分)
(II)由bn=
=
=
,知Tn=bn+1+bn+2++b2n=
+
++
,由此入手能够求出k的值.
(II)由bn=
| 1 |
| log2an |
| 1 |
| log223n-2 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
| 1 |
| 3n+4 |
| 1 |
| 6n-2 |
解答:解:(I)由已知an=7Sn-1-1①an+1=7Sn-1②
②-①,得an+1-an=7(Sn-Sn-1)=7an(n≥2)(2分)
∴an+1=8an,又a1=2,所以数列{an}是一个以2为首项,8为公比的等比数列
∴an=2•8n-1=23n-2;(4分)
(II)bn=
=
=
,(5分)
∴Tn=bn+1+bn+2++b2n=
+
++
Tn+1=bn+2+bn+3++b2(n+1)=
+
++
+
+
∴Tn+1-Tn=
+
-
,(7分)
=
=
∵n∈N*,∴n≥1,即-3n+1<0
∴Tn+1-Tn<0,Tn+1<Tn,即数列{Tn}是一个单调递减数列,又T1=b2=
∴Tn≤T1=
,若Tn<
恒成立,则
<
,即k>3(13分)
又k是正整数,故最小正整数k为4.(14分)
②-①,得an+1-an=7(Sn-Sn-1)=7an(n≥2)(2分)
∴an+1=8an,又a1=2,所以数列{an}是一个以2为首项,8为公比的等比数列
∴an=2•8n-1=23n-2;(4分)
(II)bn=
| 1 |
| log2an |
| 1 |
| log223n-2 |
| 1 |
| 3n-2 |
∴Tn=bn+1+bn+2++b2n=
| 1 |
| 3n+1 |
| 1 |
| 3n+4 |
| 1 |
| 6n-2 |
| 1 |
| 3n+4 |
| 1 |
| 3n+7 |
| 1 |
| 6n-2 |
| 1 |
| 6n+1 |
| 1 |
| 6n+4 |
∴Tn+1-Tn=
| 1 |
| 6n+1 |
| 1 |
| 6n+4 |
| 1 |
| 3n+1 |
=
| (6n+4)(3n+1)+(6n+1)(3n+1)-(6n+1)(6n+4) |
| (6n+1)(6n+4)(3n+1) |
| -3n+1 |
| (6n+1)(6n+4)(3n+1) |
∵n∈N*,∴n≥1,即-3n+1<0
∴Tn+1-Tn<0,Tn+1<Tn,即数列{Tn}是一个单调递减数列,又T1=b2=
| 1 |
| 4 |
∴Tn≤T1=
| 1 |
| 4 |
| k |
| 12 |
| 1 |
| 4 |
| k |
| 12 |
又k是正整数,故最小正整数k为4.(14分)
点评:本题考查数列的综合运用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目