题目内容
已知数列{an}的首项a1=| 3 |
| 5 |
| 3an |
| 2an+1 |
(1)求证:数列{
| 1 |
| an |
(2)记Sn=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
(3)是否存在互不相等的正整数m,s,n,使m,s,n成等差数列且am-1,as-1,an-1成等比数列,如果存在,请给出证明;如果不存在,请说明理由.
分析:(1)根据an+1和an关系式进行化简,
(2)先由(1)得出数列{
}的通项公式,然后根据分组方法求出Sn,解不等式Sn<100即可;
(3)假设存在正整数m,s,n,根据等比数列性质得出(am-1)•(an-1)=(as-1)2并化简,再根据a+b≥2
,确定是否存在.
(2)先由(1)得出数列{
| 1 |
| an |
(3)假设存在正整数m,s,n,根据等比数列性质得出(am-1)•(an-1)=(as-1)2并化简,再根据a+b≥2
| ab |
解答:解:(1)∵
=
+
,∴
-1=
-
,(2分)
∵
-1≠0,∴
-1≠0(n∈N*),(3分)
∴
-1=
×(
)n-1,
∴数列{
-1}为等比数列.(4分)
(2)由(1)可求得
-1=
×(
)n-1,∴
=2×(
)n+1.(5分)Sn=
+
++
=n+2(
+
++
)=n+2•
=n+1-
,(7分)
若Sn<100,则n+1-
<100,∴nmax=99.(9分)
(3)假设存在,则m+n=2s,(am-1)•(an-1)=(as-1)2,(10分)
∵an=
,∴(
-1)•(
-1)=(
-1)2.(12分)
化简得:3m+3n=2•3s,(13分)
∵3m+3n≥2•
=2•3s,当且仅当m=n时等号成立.(15分)
又m,n,s互不相等,∴不存在.(16分)
| 1 |
| an+1 |
| 2 |
| 3 |
| 1 |
| 3an |
| 1 |
| an+1 |
| 1 |
| 3an |
| 1 |
| 3 |
∵
| 1 |
| a1 |
| 1 |
| an |
∴
| 1 |
| an |
| 2 |
| 3 |
| 1 |
| 3 |
∴数列{
| 1 |
| an |
(2)由(1)可求得
| 1 |
| an |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| an |
| 1 |
| 3 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
| ||||
1-
|
| 1 |
| 3n |
若Sn<100,则n+1-
| 1 |
| 3n |
(3)假设存在,则m+n=2s,(am-1)•(an-1)=(as-1)2,(10分)
∵an=
| 3n |
| 3n+2 |
| 3n |
| 3n+2 |
| 3m |
| 3m+2 |
| 3s |
| 3s+2 |
化简得:3m+3n=2•3s,(13分)
∵3m+3n≥2•
| 3m+n |
又m,n,s互不相等,∴不存在.(16分)
点评:本题考查了等比数列的性质、前n项和的求法以及不等式的解法,综合性很强,本题要注意a+b≥2
运用,本题有一定难度.
| ab |
练习册系列答案
相关题目