题目内容
设f(x)=(1)f′(x);
(2)f(x)图象在点(8,
)处的切线方程.
解:(1)f′=(
)′
=[(
)
]′
=
(
)
·(
)′
=
(
)![]()
![]()
=
(
)![]()
![]()
=![]()
=
(3x+1)
·x
.
(2)所求切线的斜率为k=f′(8)=
(3×8+1)
·8
=
×25
·8
=
,所以切线方程为y-
=
(x-8),即x-300
y+592=0.
练习册系列答案
相关题目
题目内容
设f(x)=(1)f′(x);
(2)f(x)图象在点(8,
)处的切线方程.
解:(1)f′=(
)′
=[(
)
]′
=
(
)
·(
)′
=
(
)![]()
![]()
=
(
)![]()
![]()
=![]()
=
(3x+1)
·x
.
(2)所求切线的斜率为k=f′(8)=
(3×8+1)
·8
=
×25
·8
=
,所以切线方程为y-
=
(x-8),即x-300
y+592=0.