题目内容
1.已知$\overrightarrow{a}$⊥$\overrightarrow{b}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,且$\overrightarrow a+2\overrightarrow b$与$λ\overrightarrow a-\overrightarrow b$垂直,则实数λ的值为$\frac{9}{2}$.分析 运用向量数量积的性质,主要是向量的平方即为模的平方,以及向量垂直的条件:数量积为0,解方程即可得到所求值.
解答 解:|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,且$\overrightarrow a+2\overrightarrow b$与$λ\overrightarrow a-\overrightarrow b$垂直,
可得($\overrightarrow a+2\overrightarrow b$)•($λ\overrightarrow a-\overrightarrow b$)=0,
可得λ$\overrightarrow{a}$2-2$\overrightarrow{b}$2+(2λ-1)$\overrightarrow{a}$•$\overrightarrow{b}$=0,
由$\overrightarrow{a}$⊥$\overrightarrow{b}$,可得$\overrightarrow{a}$•$\overrightarrow{b}$=0,
即有4λ-2×9+0=0,
解得λ=$\frac{9}{2}$.
故答案为:$\frac{9}{2}$.
点评 本题考查向量数量积的性质,主要是向量的平方即为模的平方,以及向量垂直的条件:数量积为0,考查运算能力,属于基础题.
练习册系列答案
相关题目
2.已知l、m是两直线,α是平面,l∥α,m⊥α,则直线l、m的关系是( )
| A. | l∥m | B. | l⊥m | C. | l与m是相交直线 | D. | l与m是异面直线 |
16.已知集合A={x|log3x<1},B={y|y=3x,x≥0},则A∩B=( )
| A. | ∅ | B. | {x|1<x≤3} | C. | {x|1<x<3} | D. | {x|1≤x<3} |
13.已知$a=2ln\frac{2018}{2017}-{({\frac{2018}{2017}})^2},b=2ln\frac{2017}{2016}-{({\frac{2017}{2016}})^2}$,$c=2ln\frac{2016}{2015}-{({\frac{2016}{2015}})^2}$,则( )
| A. | a>b>c | B. | a>c>b | C. | c>a>b | D. | c>b>a |
10.“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:
(1)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,
(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有X人,超过10000步的有Y人,设ξ=|X-Y|,求ξ的分布列及数学期望.
| 步数 性别 | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | >10000 |
| 男 | 1 | 2 | 3 | 6 | 8 |
| 女 | 0 | 2 | 10 | 6 | 2 |
| 积极型 | 懈怠型 | 总计 | |
| 男 | 14 | 8 | 22 |
| 女 | 6 | 12 | 18 |
| 总计 | 20 | 20 | 40 |
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 |