题目内容

11.设x+2y=1,x≥0,y≥0,则x+y的最小值和最大值分别是$\frac{1}{2}$;1.

分析 由题意易得0≤x≤1,可得x+y=$\frac{1}{2}$x+$\frac{1}{2}$,由不等式的性质可得.

解答 解:∵x+2y=1,x≥0,y≥0,
∴y=$\frac{1-x}{2}$≥0,解得x≤1,
结合x≥0可得0≤x≤1,
∴x+y=x+$\frac{1-x}{2}$=$\frac{1}{2}$x+$\frac{1}{2}$,
∵0≤x≤1,∴0≤$\frac{1}{2}$x≤$\frac{1}{2}$,
∴$\frac{1}{2}$≤$\frac{1}{2}$x+$\frac{1}{2}$≤1,
∴x+y的最小值和最大值分别是:$\frac{1}{2}$;1
故答案为:$\frac{1}{2}$;1

点评 本题考查不等式的性质,消元并得出0≤x≤1是解决问题的关键,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网