题目内容
【题目】已知椭圆
的离心率为
,过椭圆
的焦点且垂直于
轴的直线被椭圆
截得的弦长为
.
(1)求椭圆
的方程;
(2)设点
均在椭圆
上,点
在抛物线
上,若
的重心为坐标原点
,且
的面积为
,求点
的坐标.
【答案】(1)
;(2)
,或
.
【解析】
(1)运用离心率公式和垂直于
轴的弦长公式,以及
的关系解方程可得
,进而得到所求椭圆的方程;
(2)设
,联立椭圆方程,运用韦达定理和中点坐标公式、三角形的重心坐标公式,可得
的坐标,代入抛物线方程,结合三角形的面积公式,计算可得
的坐标.
(1)根据题意得
,又因为
,解得
,则
,
所以椭圆
的方程为:
;
(2)设
,联立椭圆方程
,可得
,
①
设
,
,
可得
,
,
由
在抛物线
上,可得
,
则
②
,
由![]()
![]()
,
则![]()
,
可得
③,将②代入③整理可得
,
解得
或
,相应的
或1.
所以
,或
.
练习册系列答案
相关题目
【题目】某省的一个气象站观测点在连续4天里记录的AQI指数M与当天的空气水平可见度y(单位:cm)的情况如下表:
M | 900 | 700 | 300 | 100 |
y | 0.5 | 3.5 | 6.5 | 9.5 |
该省某市2019年12月份AQI指数M的频数分布表如下:
M |
|
|
|
|
|
频数 | 3 | 6 | 12 | 6 | 3 |
(1)设
,若x与y之间具有线性关系,试根据上述数据求出y关于x的线性回归方程;
(2)王先生在该市开了一家洗车店,洗车店每天的平均收入与AQI指数的相关关系如下表:
M |
|
|
|
|
|
日均收入(元) | -2000 | -1000 | 2000 | 6000 | 8000 |
估计王先生的洗车店2019年12月份每天的平均收入.
附参考公式:
,其中![]()