题目内容
用数学归纳法证明:
+
+
+…+
>
(n∈N,n≥1)
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| n+n |
| 11 |
| 24 |
证明:(1)当n=1时,左边=
>
,∴n=1时成立(2分)
(2)假设当n=k(k≥1)时成立,即
+
+
+…+
>
那么当n=k+1时,左边=
+
+…+
+
+
=
+
+
+…+
+
+
-
>
+
-
>
.
∴n=k+1时也成立(7分)
根据(1)(2)可得不等式对所有的n≥1都成立(8分)
| 1 |
| 2 |
| 11 |
| 24 |
(2)假设当n=k(k≥1)时成立,即
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| k+k |
| 11 |
| 24 |
那么当n=k+1时,左边=
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| k+k |
| 1 |
| K+1+k |
| 1 |
| k+1+k+1 |
=
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| k+k |
| 1 |
| k+k+1 |
| 1 |
| k+1+k+1 |
| 1 |
| k+1 |
>
| 11 |
| 24 |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
| 11 |
| 24 |
∴n=k+1时也成立(7分)
根据(1)(2)可得不等式对所有的n≥1都成立(8分)
练习册系列答案
相关题目