ÌâÄ¿ÄÚÈÝ
14£®£¨¢ñ£©ÇóÖ¤£ºk1+k2=$\frac{2{x}_{0}£¨{y}_{0}-2£©}{{{x}_{0}}^{2}-4}$£¬k1•k2=$\frac{{{y}_{0}}^{2}-4{y}_{0}}{{{x}_{0}}^{2}-4}$£®
£¨¢ò£©Çó¹ýµãMµÄÔ²µÄÁ½ÇÐÏßÓëxÖáΧ³ÉµÄÈý½ÇÐÎÃæ»ýSµÄ×îСֵ£®
·ÖÎö £¨I£©ÉèÇÐÏߣºy-y0=k£¨x-x0£©£¬ÇÐÏßÓëxÖá½»Óڵ㣨${x}_{0}-\frac{{y}_{0}}{k}$£¬0£©£¬Ô²Ðĵ½ÇÐÏߵľàÀëd=$\frac{|-2+{y}_{0}-{kx}_{0}|}{\sqrt{{k}^{2}+1}}$=2£¬½áºÏΤ´ï¶¨Àí£¬¿ÉµÃk1+k2=$\frac{2{x}_{0}£¨{y}_{0}-2£©}{{{x}_{0}}^{2}-4}$£¬k1•k2=$\frac{{{y}_{0}}^{2}-4{y}_{0}}{{{x}_{0}}^{2}-4}$£®
£¨¢ò£©Çó³ö¹ýµãMµÄÔ²µÄÁ½ÇÐÏßÓëxÖáΧ³ÉµÄÈý½ÇÐÎÃæ»ýSµÄ±í´ïʽ£¬ÓÉ»ù±¾²»µÈʽ¿ÉÇó³öÁ½ÇÐÏßÓëxÖáΧ³ÉµÄÈý½ÇÐÎÃæ»ýSµÄ×îСֵ£®
½â´ð ½â£º£¨I£©Ö¤Ã÷£ºÉèÇÐÏß·½³Ìy-y0=k£¨x-x0£©£¬¼´kx-y+y0-kx0=0£¬
ÇÐÏßÓëxÖύΪ£¨${x}_{0}-\frac{{y}_{0}}{k}$£¬0£©£¬Ô²Ðĵ½Ö±ÏߵľàÀëd=$\frac{|-2+{y}_{0}-{kx}_{0}|}{\sqrt{{k}^{2}+1}}$=2 £¨3·Ö£©
ÕûÀíµÃ£º${{£¨x}_{0}}^{2}-4£©{k}^{2}+2{x}_{0}£¨2-{y}_{0}£©k+{y}_{0}^{2}-4{y}_{0}=0$ £¨5·Ö£©
ÓÉÁ½ÇÐÏßµÄбÂÊ·Ö±ðΪk1£¬k2
Ôòk1+k2=$\frac{2{x}_{0}£¨{y}_{0}-2£©}{{{x}_{0}}^{2}-4}$£¬k1•k2=$\frac{{{y}_{0}}^{2}-4{y}_{0}}{{{x}_{0}}^{2}-4}$£¬¡£¨7·Ö£©
£¨¢ò£©S=$\frac{1}{2}$|£¨${x}_{0}-\frac{{y}_{0}}{{k}_{1}}$£©-£¨${x}_{0}-\frac{{y}_{0}}{{k}_{2}}$£©|y0
=$\frac{1}{2}$y02•$\left|\frac{{k}_{1}-{k}_{2}}{{k}_{1}{k}_{2}}\right|$
=$\frac{1}{2}$y02•$\sqrt{\frac{£¨{k}_{1}+{k}_{2}£©^{2}-4{k}_{1}{k}_{2}}{{£¨k}_{1}{k}_{2}£©^{2}}}$
=$\frac{1}{2}$y02•$\sqrt{\frac{{£¨\frac{2{x}_{0}£¨{y}_{0}-2£©}{{{x}_{0}}^{2}-4}£©}^{2}-4•\frac{{{y}_{0}}^{2}-4{y}_{0}}{{{x}_{0}}^{2}-4}}{{£¨\frac{{{y}_{0}}^{2}-4{y}_{0}}{{{x}_{0}}^{2}-4}£©}^{2}}}$
=$\frac{2{y}_{0}^{\;}\sqrt{{x}_{0}^{2}+{y}_{0}^{2}-4{y}_{0}}}{{y}_{0}-4}$
=$\frac{2{y}_{0}^{2}}{{y}_{0}-4}$
=2[$\frac{16}{{y}_{0}-4}$+£¨y0-4£©+8]
¡Ý2£¨2$\sqrt{\frac{16}{{y}_{0}-4}•£¨{y}_{0}-4£©}$+8£©
=32 ¡£¨12·Ö£©£®
µ±ÇÒ½öµ±$\frac{16}{{y}_{0}-4}$=y0-4£¬¼´y0=8ʱȡµÈºÅ£®
¹ÊÁ½ÇÐÏßÓëxÖáΧ³ÉµÄÈý½ÇÐÎÃæ»ýSµÄ×îСֵΪ32 ¡£¨14·Ö£©
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÅ×ÎïÏßµÄ×ÛºÏÔËÓ㬾ßÌåÉæ¼°µ½Å×ÎïÏߵĻù±¾ÐÔÖʼ°Ó¦Óã¬Ö±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµ¡¢Ô²µÄ¼òµ¥ÐÔÖʵȻù´¡ÖªÊ¶£¬¹ì¼£·½³ÌµÄÇ󷨺͵㵽ֱÏߵľàÀ빫ʽµÄÔËÓã¬Ò×´íµãÊǾùÖµ¶¨ÀíµÄÓ¦Ó㮽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
| A£® | $\frac{1}{2}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{1}{4}$ | D£® | $\frac{2}{3}$ |
| A£® | $\frac{4\sqrt{6}}{9}$ | B£® | $\frac{4}{3}$ | C£® | $\frac{8}{7}$ | D£® | $\frac{6}{5}$ |
| A£® | $\frac{1}{2}$ | B£® | 1 | C£® | $\frac{2}{3}$ | D£® | $-\frac{1}{2}$ |
| A£® | 8064 | B£® | 8065 | C£® | 8067 | D£® | 8068 |