题目内容
设正数x,y满足log2(x+y+3)=log2x+log2y,则x+y的取值范围是( )
| A.(0,6] | B.[6,+∞) | C.[1+
| D.(0,1+
|
由正数x,y满足log2(x+y+3)=log2x+log2y,∴x+y+3=xy,
而xy≤(
)2,则x+y+3≤
.当且仅当x=y>0时取等号.
令x+y=t,则t+3≤
化为t2-4t-12≥0,解得t≥6或t≤-2.
∵t>0,∴取t≥6.
故选B.
而xy≤(
| x+y |
| 2 |
| (x+y)2 |
| 4 |
令x+y=t,则t+3≤
| t2 |
| 4 |
∵t>0,∴取t≥6.
故选B.
练习册系列答案
相关题目