题目内容

18.已知在△ABC中,sinA与sinB的等差中项为$\frac{7}{10}$.等比中项为$\frac{2\sqrt{3}}{5}$,则sinC+sin(A-B)=$\frac{18}{25}$或$\frac{32}{25}$..

分析 由条件利用等差中项、等比中项的定义和性质求得sinA、sinB的值,可得cosA、cosB的值,再利用两角和差的正弦公式、诱导公式求得sinC+sin(A-B)的值.

解答 解:△ABC中,∵sinA与sinB的等差中项为$\frac{7}{10}$,等比中项为$\frac{2\sqrt{3}}{5}$,
∴sinA+sinB=$\frac{7}{5}$,sinA•sinB=$\frac{12}{25}$,∴sinA=$\frac{3}{5}$、sinB=$\frac{4}{5}$,或 sinA=$\frac{4}{5}$、sinB=$\frac{3}{5}$,
∴当sinA=$\frac{3}{5}$、sinB=$\frac{4}{5}$ 时,cosA=$\sqrt{{1-sin}^{2}A}$=$\frac{4}{5}$,cosB=$\sqrt{{1-sin}^{2}B}$=$\frac{3}{5}$,
sinC+sin(A-B)=sin(A+B)+sin(A-B)=2sinAcosB=2•$\frac{3}{5}$•$\frac{3}{5}$=$\frac{18}{25}$.
∴当sinA=$\frac{4}{5}$、sinB=$\frac{3}{5}$,cosA=$\sqrt{{1-sin}^{2}A}$=$\frac{3}{5}$,cosB=$\sqrt{{1-sin}^{2}B}$=$\frac{4}{5}$.
sinC+sin(A-B)=sin(A+B)+sin(A-B)=2sinAcosB=2•$\frac{4}{5}$•$\frac{4}{5}$=$\frac{32}{25}$,
故答案为:$\frac{18}{25}$或$\frac{32}{25}$.

点评 本题主要考查等差中项、等比中项的定义和性质,两角和差的正弦公式、诱导公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网