题目内容
已知集合A=﹛-2,0,2﹜,,则 ( )
A、 B、 C、 D、
B
已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,点O为坐标原点,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B,则|OA|与|OB|的长度依次为( )
A.a,a B.a,
C., D.,a
在平面直角坐标系中,记抛物线y=x-x2与x轴所围成的平面区域为M,该抛物线与直线y=kx(k>0)所围成的平面区域为A,向区域M内随机抛掷一点P,若点P落在区域A内的概率为,则k的值为( )
A. B. C. D.
设为第二象限角,若,则
在中,内角的对应边分别为,向量与平行. (Ⅰ)求角的值; (Ⅱ)若,求面积的最大值.
若,,则等于 ( )
设等差数列的前项和为,且,,则等于 ( )
A、90 B、100 C、110 D、120
设,则使函数的定义域为R且为奇函数的所有的值为( )
A.1,3 B.-1,1 C.-1,3 D.-1,1,3
定义在上的函数f(x),f′(x)是它的导函数,且恒有f(x)<f′(x)·tan x成立,则( )