题目内容
2.(1)函数f(x)=$\frac{1}{{x}^{2}-4x+5}$的值域为(0,1];(2)函数f(x)=$\frac{1-x}{2x+5}$的单调递减区间为(-∞,-$\frac{5}{2}$),(-$\frac{5}{2}$,+∞).
分析 (1)通过x的范围以及二次函数的性质求出f(x)的值域即可;(2)求出函数的导数,从而求出函数的递减区间即可.
解答 解:(1)f(x)=$\frac{1}{{x}^{2}-4x+5}$=$\frac{1}{{(x-2)}^{2}+1}$,
x=2时,f(x)最大,最大值是1,x→∞时,f(x)→0,
故f(x)的值域为(0,1];
(2)f(x)=$\frac{1-x}{2x+5}$,f′(x)=$\frac{-(2x+5)-2(1-x)}{{(2x+5)}^{2}}$=-$\frac{7}{{(2x+5)}^{2}}$<0,
故f(x)的单调递减区间为(-∞,-$\frac{5}{2}$),(-$\frac{5}{2}$,+∞);
故答案为:(0,1],(-∞,-$\frac{5}{2}$),(-$\frac{5}{2}$,+∞).
点评 本题考查了函数的单调性、最值问题,考查求函数的值域问题,是一道基础题.
练习册系列答案
相关题目
7.已知集合P={1,m},Q={m2},若P∪Q=P,则实数m所有可以取得值是( )
| A. | 0 | B. | 1,0 | C. | 0,-1 | D. | 1,-1,0 |
11.某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如表所示:
若数学成绩90分(含90分)以上为优秀,物理成绩85(含85分)以上为优秀.有多少把握认为学生的数学成绩与物理成绩之间有关系( )
| 序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数学成绩 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
| 物理成绩 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
| A. | 99.5% | B. | 99.9% | C. | 97.5% | D. | 95% |