题目内容
3.已知函数$f(x)=2cos(x+\frac{π}{3})$,$x∈[-\frac{π}{2},\frac{π}{3}]$,则f(x)的值域是[-1,2].分析 根据x的取值范围,利用余弦函数的图象与性质,求出f(x)的最大、最小值,得值域.
解答 解:函数$f(x)=2cos(x+\frac{π}{3})$,
$x∈[-\frac{π}{2},\frac{π}{3}]$时,x+$\frac{π}{3}$∈[-$\frac{π}{6}$,$\frac{2π}{3}$],
∴cos(x+$\frac{π}{3}$)∈[-$\frac{1}{2}$,1];
∴2cos(x+$\frac{π}{3}$)∈[-1,2],
即x=$\frac{π}{3}$时,f(x)取得最小值-1,
x=-$\frac{π}{3}$时,f(x)取得最大值2,
∴f(x)的值域是[-1,2].
故答案为:[-1,2].
点评 本题考查了余弦函数的图象与性质的应用问题,是基础题.
练习册系列答案
相关题目
14.已知O为正△ABC内的一点,且满足$\overrightarrow{OA}+λ\overrightarrow{OB}+(1+λ)\overrightarrow{OC}=\overrightarrow 0$,若△OAB的面积与△OBC的面积的比值为3,则λ的值为( )
| A. | $\frac{1}{2}$ | B. | $\frac{5}{2}$ | C. | 2 | D. | 3 |
11.已知点P为不等式组$\left\{\begin{array}{l}x-2y+1≥0\\ x≤2\\ x+y-1≥0\end{array}\right.$所表示的平面区域内的一点,点Q是M:(x+1)2+y2=1上的一个动点,则当∠MPQ最大时,|PQ|=( )
| A. | 1 | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{11}}}{3}$ | D. | $\frac{{2\sqrt{5}}}{3}$ |
15.已知集合$A=\{x|x<2\},B=\{x|\frac{x}{x-1}<1\},R$为实数集,则集合A∩(∁RB)=( )
| A. | R | B. | (-∞,2) | C. | (1,2) | D. | [1,2) |
12.已知函数f(x)=lnx-x2与g(x)=(x-2)2-$\frac{1}{2x-4}$-m的图象上存在关于(1,0)对称的点,则实数m的取值范围是( )
| A. | (-∞,1-ln2) | B. | (-∞,1-ln2] | C. | (1-ln2,+∞) | D. | [1-ln2,+∞) |