题目内容

下列函数在指定区间上具有单调性的是(  )
分析:利用函数的单调性的定义即可判断出.
解答:解:A.虽然函数y=
2
x
分别在区间(-∞,0)与(0,+∞)上单调递减,但是在整个定义域(-∞,0)∪(0,+∞)不具有单调性;
C.函数y=x2分别在(-∞,0)与(0,+∞)上单调递减、单调递增,因此在整个定义域R上不具有单调性;
D.y=|x|=
x,当x≥0时
-x,当x<0时
,因此函数y=x在(0,+∞)上单调递增,在(-∞,0)上单调递减,故在整个定义域R上不具有单调性;
B.y=
2
x-1
,x∈(1,+∞)
单调递减,下面证明:
?1<x1<x2
则f(x1)-f(x2)=
2
x1-1
-
2
x2-1
=
2(x2-x1)
(x1-1)(x2-1)

∵1<x1<x2,∴x2-x1>0,x1-1>0,x2-1>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2).
∴函数在(1,+∞)上单调递减.
综上可知:只有B在指定区间上具有单调性.
故选B.
点评:熟练掌握函数的单调性是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网