题目内容
下列函数在指定区间上具有单调性的是( )
分析:利用函数的单调性的定义即可判断出.
解答:解:A.虽然函数y=
分别在区间(-∞,0)与(0,+∞)上单调递减,但是在整个定义域(-∞,0)∪(0,+∞)不具有单调性;
C.函数y=x2分别在(-∞,0)与(0,+∞)上单调递减、单调递增,因此在整个定义域R上不具有单调性;
D.y=|x|=
,因此函数y=x在(0,+∞)上单调递增,在(-∞,0)上单调递减,故在整个定义域R上不具有单调性;
B.y=
,x∈(1,+∞)单调递减,下面证明:
?1<x1<x2,
则f(x1)-f(x2)=
-
=
,
∵1<x1<x2,∴x2-x1>0,x1-1>0,x2-1>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2).
∴函数在(1,+∞)上单调递减.
综上可知:只有B在指定区间上具有单调性.
故选B.
| 2 |
| x |
C.函数y=x2分别在(-∞,0)与(0,+∞)上单调递减、单调递增,因此在整个定义域R上不具有单调性;
D.y=|x|=
|
B.y=
| 2 |
| x-1 |
?1<x1<x2,
则f(x1)-f(x2)=
| 2 |
| x1-1 |
| 2 |
| x2-1 |
| 2(x2-x1) |
| (x1-1)(x2-1) |
∵1<x1<x2,∴x2-x1>0,x1-1>0,x2-1>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2).
∴函数在(1,+∞)上单调递减.
综上可知:只有B在指定区间上具有单调性.
故选B.
点评:熟练掌握函数的单调性是解题的关键.
练习册系列答案
相关题目