题目内容

15.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{x}+3,}&{x≥0}\\{ax+b,}&{x<0}\end{array}\right.$ 满足条件,对于?x1∈R,存在唯一的x2∈R,使得f(x1)=f(x2).当f(2a)=f(3b)成立时,则实数a+b=(  )
A.$\frac{\sqrt{6}}{2}$B.-$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{6}}{2}$+3D.-$\frac{\sqrt{6}}{2}$+3

分析 根据条件得到f(x)在(-∞,0)和(0,+∞)上单调,得到a,b的关系进行求解即可.

解答 解:若对于?x1∈R,存在唯一的x2∈R,使得f(x1)=f(x2).
∴f(x)在(-∞,0)和(0,+∞)上单调,
则b=3,且a<0,
由f(2a)=f(3b)得f(2a)=f(9),
即2a2+3=$\sqrt{9}$+3=3+3,
即a=-$\frac{\sqrt{6}}{2}$,
则a+b=-$\frac{\sqrt{6}}{2}$+3,
故选:D.

点评 本题主要考查分段函数的应用,根据条件得到a,b的关系是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网