题目内容
设数列{an}、{bn}、{cn}满足:bn=an-an+2,cn=an+2an+1+3an+2(n=1,2,3,…),求证:{an}为等差数列的充分必要条件是{cn}为等差数列且bn≤bn+1(n=1,2,3,…).
证明:必要性:
设{an}是公差为d1的等差数列,则
bn+1-bn=(an+1-an+3) - (an-an+2)
= (an+1-an) - (an+3-an+2)= d1- d1=0,
所以bn≤bn+1(n=1,2,3,…)成立.
又cn+1-cn=(an+1-an)+2(an+2-an+1)+3(an+3-an+2)= d1+2d1 +3d1 =6d1(常数)(n=1,2,3,…),
所以数列{cn}为等差数列.
充分性:
设数列{cn}是公差为d2的等差数列,且bn≤bn+1(n=1,2,3,…).
∵ cn=an+2an+1+3an+2, ①
∴ cn+2=an+2+2an+3+3an+4, ②
①-②,得cn-cn+2=(an-an+2)+2 (an+1-an+3)+3 (an+2-an+4)=bn+2bn+1+3bn+2.
∵ cn-cn+2=(cn-cn+1)+(cn+1-cn+2)= -2d2,
∴ bn+2bn+1+3bn+2=-2d2, ③
从而有bn+1+2bn+2+3bn+3=-2d2, ④
④-③,得(bn+1-bn)+2 (bn+2-bn+1)+3 (bn+3-bn+2)=0.⑤
∵ bn+1-bn≥0,bn+2-bn+1≥0,bn+3-bn+2≥0,
∴ 由⑤得bn+1-bn=0(n=1,2,3,…).
由此不妨设bn=d3 (n=1,2,3,…),则an-an+2=d3(常数).
由此cn=an+2an+1+3an+2cn=4an+2an+1-3d3,
从而cn+1=4an+1+2an+2-5d3,
两式相减得cn+1-cn=2(an+1-an) -2d3,
因此an+1-an=
(cn+1-cn)+d3=
d2+d3(常数) (n=1,2,3,…),
∴ 数列{an}为等差数列.