题目内容


 设数列{an}、{bn}、{cn}满足:bn=an-an+2,cn=an+2an+1+3an+2(n=1,2,3,…),求证:{an}为等差数列的充分必要条件是{cn}为等差数列且bn≤bn+1(n=1,2,3,…).


证明:必要性:

设{an}是公差为d1的等差数列,则

bn+1-bn=(an+1-an+3) - (an-an+2)

= (an+1-an) - (an+3-an+2)= d1- d1=0,

所以bn≤bn+1(n=1,2,3,…)成立.

又cn+1-cn=(an+1-an)+2(an+2-an+1)+3(an+3-an+2)= d1+2d1 +3d1 =6d1(常数)(n=1,2,3,…),

所以数列{cn}为等差数列.

充分性:

设数列{cn}是公差为d2的等差数列,且bn≤bn+1(n=1,2,3,…).

∵ cn=an+2an+1+3an+2, ①

∴ cn+2=an+2+2an+3+3an+4, ②

①-②,得cn-cn+2=(an-an+2)+2 (an+1-an+3)+3 (an+2-an+4)=bn+2bn+1+3bn+2.

∵ cn-cn+2=(cn-cn+1)+(cn+1-cn+2)= -2d2

∴ bn+2bn+1+3bn+2=-2d2, ③

从而有bn+1+2bn+2+3bn+3=-2d2, ④

④-③,得(bn+1-bn)+2 (bn+2-bn+1)+3 (bn+3-bn+2)=0.⑤

∵ bn+1-bn≥0,bn+2-bn+1≥0,bn+3-bn+2≥0,

∴ 由⑤得bn+1-bn=0(n=1,2,3,…).

由此不妨设bn=d3 (n=1,2,3,…),则an-an+2=d3(常数).

由此cn=an+2an+1+3an+2cn=4an+2an+1-3d3

从而cn+1=4an+1+2an+2-5d3

两式相减得cn+1-cn=2(an+1-an) -2d3

因此an+1-an(cn+1-cn)+d3d2+d3(常数) (n=1,2,3,…),

∴ 数列{an}为等差数列.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网