题目内容

17.已知tanα=2,求
(1)tan(α+$\frac{π}{4}$)的值       
(2)$\frac{6sinα+cosα}{3sinα-cosα}$的值.

分析 (1)由条件利用两角和的正切公式,求得tan(α+$\frac{π}{4}$)的值.
(2)由条件利用同角三角函数的基本关系,求得$\frac{6sinα+cosα}{3sinα-cosα}$的值.

解答 解:(1)∵tanα=2,∴tan(α+$\frac{π}{4}$)=$\frac{tanα+1}{1-tanα}$=$\frac{2+1}{1-2}$=-3.
(2)∵tanα=2,∴$\frac{6sinα+cosα}{3sinα-cosα}$=$\frac{6tanα+1}{3tanα-1}$=$\frac{12+1}{6-1}$=$\frac{13}{5}$.

点评 本题主要考查同角三角函数的基本关系、两角和差的正切公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网