题目内容
如图,在直角梯形ABCD中,
,
,且
,E、F分别为线段CD、AB上的点,且
.将梯形沿EF折起,使得平面
平面BCEF,折后BD与平面ADEF所成角正切值为
.


(Ⅰ)求证:
平面BDE;
(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.
(Ⅰ)求证:
(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.
(1)对于面面垂直的证明,主要是通过线面垂直的判定定理,以及面面垂直的判定定理来得到,属于基础题。
(2) 45°
(2) 45°
试题分析:证明(Ⅰ)∵
∴
设
∴F为AB中点,可得
(Ⅱ)取
又MB⊥EC.∴∠DME即平面BCEF与平面ABD所成二面角.
易知∠DME=45°.∴平面BCEF与平面ABD所成二面角为45°.
点评:考查了空间中垂直的证明,以及二面角的求解的运用,属于基础题。
练习册系列答案
相关题目