题目内容
在数列{an}中,a1=1,且对任意的n∈N+,都有an+1=2an+2n.
(1)求证:数列{
}是等差数列;
(2)设数列{an}的前n项和为Sn,求证:对任意的n∈N+,Sn+1-4an都为定值.
(1)求证:数列{
| an | 2n |
(2)设数列{an}的前n项和为Sn,求证:对任意的n∈N+,Sn+1-4an都为定值.
分析:(1)由an+1=2an+2n,知
-
=
=
=
.由此能够证明数列{
}是等差数列.
(2)由(1)知
=
+
(n-1)=
,故an=n•2n-1.所以Sn=1•20+2•21+3•22+…+n•2n-1.由错位相减法能够证明对任意的n∈N+,Sn+1-4an都为定值.
| an+1 |
| 2n+1 |
| an |
| 2n |
| an+1-2an |
| 2n+1 |
| 2n |
| 2n+1 |
| 1 |
| 2 |
| an |
| 2n |
(2)由(1)知
| an |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
| n |
| 2 |
解答:证明:(1)∵an+1=2an+2n,
∴
-
=
=
=
.
∴数列{
}是以
=
为首项,
为公差的等差数列.
(2)由(1)知
=
+
(n-1)=
,
∴an=n•2n-1.
∴Sn=1•20+2•21+3•22+…+n•2n-1.…①
∴2Sn=1•21+2•22+3•23+…+(n-1)•2n-1+n•2n.…②
∴由②-①可得Sn=n•2n-(1+2+22+…+2n-1)=(n-1)•2n+1.
∴Sn+1-4an=n•2n+1+1-4n•2n-1=1,
故对任意的n∈N+,Sn+1-4an都为定值.
∴
| an+1 |
| 2n+1 |
| an |
| 2n |
| an+1-2an |
| 2n+1 |
| 2n |
| 2n+1 |
| 1 |
| 2 |
∴数列{
| an |
| 2n |
| a1 |
| 21 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)由(1)知
| an |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
| n |
| 2 |
∴an=n•2n-1.
∴Sn=1•20+2•21+3•22+…+n•2n-1.…①
∴2Sn=1•21+2•22+3•23+…+(n-1)•2n-1+n•2n.…②
∴由②-①可得Sn=n•2n-(1+2+22+…+2n-1)=(n-1)•2n+1.
∴Sn+1-4an=n•2n+1+1-4n•2n-1=1,
故对任意的n∈N+,Sn+1-4an都为定值.
点评:本题考查等差数列的证明和数列前n项和的应用,综合性强,难度大,有一定的探索性,是高考的重点.解题时要认真审题,注意构造法和错位相减法的合理运用.
练习册系列答案
相关题目