题目内容

15.(Ⅰ)求函数$y=\sqrt{x+2}+\frac{1}{x+1}$的定义域.
(Ⅱ)求值:27${\;}^{\frac{2}{3}}$+16${\;}^{-\frac{1}{2}}$-($\frac{1}{2}$)-2-($\frac{8}{27}$)${\;}^{-\frac{2}{3}}$.

分析 (Ⅰ)由根式内部的代数式大于等于0,分式的分母不为0联立不等式组得答案;
(Ⅱ)直接利用有理指数幂的运算性质化简求值.

解答 解:(Ⅰ)由$\left\{\begin{array}{l}{x+2≥0}\\{x+1≠0}\end{array}\right.$,得x≥-2且x≠-1,
∴函数$y=\sqrt{x+2}+\frac{1}{x+1}$的定义域为[-2,-1)∪(-1,+∞);
(Ⅱ)27${\;}^{\frac{2}{3}}$+16${\;}^{-\frac{1}{2}}$-($\frac{1}{2}$)-2-($\frac{8}{27}$)${\;}^{-\frac{2}{3}}$
=$({3}^{3})^{\frac{2}{3}}+({2}^{4})^{-\frac{1}{2}}-[(\frac{2}{3})^{3}]^{-\frac{2}{3}}$
=$9+\frac{1}{4}-4-\frac{9}{4}=3$.

点评 本题考查函数定义域的求法,考查了有理指数幂的运算性质,是基础的计算题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网