题目内容
设数列{an}的前n项和为Sn,点(n,
)(n∈N*)均在函数y=
x+
的图象上.
(1)求数列{an}的通项公式;
(2)设bn=
,Tn是数列{bn}的前n项和,求Tn.
| Sn |
| n |
| 1 |
| 2 |
| 1 |
| 2 |
(1)求数列{an}的通项公式;
(2)设bn=
| 1 |
| anan+1 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件,利用函数性质得到Sn=
n2+
n,由此利用an=
,能求出an=n.
(2)由an=n,推导出bn=
=
=
-
,由此利用裂项求和法能求出Tn.
| 1 |
| 2 |
| 1 |
| 2 |
|
(2)由an=n,推导出bn=
| 1 |
| anan+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:
解:(1)∵点(n,
)(n∈N*)均在函数y=
x+
的图象上,
∴
=
n+
,
∴Sn=
n2+
n,
∴a1=S1=
+
=1,
当n≥2时,an=Sn-Sn-1=(
n2-
n)-[
(n-1)2+
(n-1)]=n,
当n=1时,a1=1满足上式,
∴an=n.
(2)∵an=n,
∴bn=
=
=
-
,
Tn=1-
+
-
+…+
-
=1-
=
.
即数列{bn}的前n项和Tn=
.
| Sn |
| n |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| Sn |
| n |
| 1 |
| 2 |
| 1 |
| 2 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 2 |
∴a1=S1=
| 1 |
| 2 |
| 1 |
| 2 |
当n≥2时,an=Sn-Sn-1=(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
当n=1时,a1=1满足上式,
∴an=n.
(2)∵an=n,
∴bn=
| 1 |
| anan+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
Tn=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
=
| n |
| n+1 |
即数列{bn}的前n项和Tn=
| n |
| n+1 |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,是中档题,解题时要注意裂项求和法的合理运用.
练习册系列答案
相关题目