题目内容
已知a=31.3,b=(
)-0.3,c=2log72,则a,b,c的大小关系为( )
| 1 |
| 3 |
| A、b<a<c |
| B、b<c<a |
| C、c<a<b |
| D、c<b<a |
考点:对数值大小的比较,指数函数的图像与性质
专题:函数的性质及应用
分析:利用指数函数和对数函数的性质求解.
解答:
解:∵a=31.3>3,
1=(
)0<b=(
)-0.3<(
)-
=
,
c=2log72=log74<log77=1,
∴c<b<a.
故选:D.
1=(
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 3 |
c=2log72=log74<log77=1,
∴c<b<a.
故选:D.
点评:本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数和对数函数的单调性的合理运用.
练习册系列答案
相关题目
已知a+2i=1+2bi(a,b∈R),其中i为虚数单位,则a+b=( )
| A、2 | B、-2 | C、1 | D、-1 |
函数f(x)=2x-cosx的零点的个数为( )
| A、1个 | B、2个 |
| C、无穷多个 | D、0个 |
若x=-1是函数f(x)=ax3-3x的一个极值点,则a的值为( )
| A、-1 | B、-2 | C、1 | D、2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
已知集合A={x|y=
,x∈R},B={y|y=x2+1,x∈R},则A∩B为( )
| 1-x2 |
| A、{1} | B、[0,+∞) |
| C、∅ | D、{(0,1)} |