题目内容
在数列{an}中,a1=2,an+1=4an+1,n∈N*.
(1)证明数列{an+
}是等比数列;
(2)求数列{an}的前n项和Sn.
(1)证明数列{an+
| 1 |
| 3 |
(2)求数列{an}的前n项和Sn.
证明:(1)∵an+1=4an+1,n∈N*,
令an+1+m=4(an+m),可得3m=1
∴m=
∴an+1+
=4(an+
)
∵a1=2
∴a1+
=
∴{an+
}是以
为首项,4为公比的等比数列
(2)由(1)可得,an+
=
•4n-1an=
•4n-1-
∴Sn=
•41-1-
+
•42-1-
+…+
•4n-1-
=
•
-
=
•4n-
-
令an+1+m=4(an+m),可得3m=1
∴m=
| 1 |
| 3 |
∴an+1+
| 1 |
| 3 |
| 1 |
| 3 |
∵a1=2
∴a1+
| 1 |
| 3 |
| 7 |
| 3 |
∴{an+
| 1 |
| 3 |
| 7 |
| 3 |
(2)由(1)可得,an+
| 1 |
| 3 |
| 7 |
| 3 |
| 7 |
| 3 |
| 1 |
| 3 |
∴Sn=
| 7 |
| 3 |
| 1 |
| 3 |
| 7 |
| 3 |
| 1 |
| 3 |
| 7 |
| 3 |
| 1 |
| 3 |
| 7 |
| 3 |
| 1•(1-4n) |
| 1-4 |
| n |
| 3 |
| 7 |
| 9 |
| n |
| 3 |
| 7 |
| 9 |
练习册系列答案
相关题目